
1 of 38 031202

INTRODUCTION
The Dallas SHA iButton® (DS1963S) is a smart token that offers many high security features and
supports multiple services. This document provides an overview for implementing applications of
digital identification and transactions using the SHA iButtons. A sample service implementation is
used to illustrate the detailed steps required for installing the service data and conducting an electronic
transaction. The usage of key API calls are discussed and the annotated listing of command and data
flows for implementing each API are presented.

The SHA iButtons are suitable for a variety of applications:
� mass transportation
� electronic door locks
� building access controls
� computer and network access controls
� pay phones

� parking meters
� prepay utility meters
� vending machines
� software authorization

WHAT IS SHA?
SHA (Secured Hash Algorithm), through years of development and improvement by cryptographic
experts, had been accepted as one of the best secure and widely employed hash algorithm. The SHA
algorithm implemented in the SHA iButton (Dallas Semiconductor part number DS1963S) is SHA-1,
which conforms to the standards specified in Federal Information Publication Standards 180-1 (FIPS
180-1). In the simplistic sense, a hash function is a process that takes an input string (called pre-image
or message) and converts it to a fixed and shorter length output string (called hash value, message
digest, or message authentication code). SHA is very efficient for detecting errors or changes in the
input string since the inspection is made on the shorter condensed message digest. A one-way hash
function has the characteristics of being easy to generate the digest but very hard to reverse compute
the input message from a given digest. The security of a one-way hash function is in its strong one-way
digest generation operation. Secrecy can be obtained by embedding a secret code in the input string so
that no one can generate the correct digest without knowing the secret code. SHA takes input streams
in blocks of 512 bits (64 bytes) and produces a 20-byte long output called message authentication code
(MAC) or message digest. If the input is not 512 bits long the algorithm pads it to the nearest multiples
of 512 bits. The figure below illustrates the chaining of multiple input blocks (in 512 bits) in
generating the final MAC.

Block N

MAC

Block 1 Block 2

SHA-1 SHA-1 SHA-1

Application Note 157
SHA iButton API Overview

www.maxim-ic.com

iButton is a registered trademark of Dallas Semiconductor.

AN157

2 of 38

SHA IN THE DALLAS SHA iBUTTON (DS1963S)
The Dallas SHA iButtons (DS1963S) implement the SHA-1 computation in a special accelerated
circuitry that can complete one SHA-1 computation in under 1 ms. The input to the SHA-1 engine is
limited to one block. By design, the input data block to the SHA-1 engine is made up of user data
stored in a read/write data page (32 bytes), in the scratchpad (15 bytes), and a secret (8 bytes) that has
been pre-installed in a no-read access secret page by the service provider (see Figure 1). The
computation result (MAC) is placed in the scratchpad for subsequent operations. Depending upon the
specific SHA operation called upon, this output MAC may or may not be hidden in the scratchpad
from external access.

MAC GENERATION IN SHA iBUTTON Figure 1

SHA iBUTTON FEATURES
The SHA iButton is a rugged 4K-bit read/write data carrier that can be easily accessed with minimal
hardware. An integrated 512-bit SHA-1 engine can be activated to compute a 160-bit message
authentication codes (MAC) based on information stored in the device. Data is transferred serially via
the 1-Wire® protocol, which requires only a single data contact and a ground return. A single SHA
iButton can serve up to eight independent applications each with its own secret and page counter. The
SHA iButton may also function as a coprocessor that safe-keeps the system secrets and assists the local
transaction host in computing the MACs needed for user token authentication and application data
validation. The SHA iButton, like other iButtons, has an additional memory area called the scratchpad
that acts as a buffer when writing data to the device memory. The SHA iButton’s scratchpad is also
used for feeding data segments to the SHA-1 engine or receiving/comparing message authentication
codes. When writing to an iButton, data is first written to the scratchpad from where it can be read
back and verified for communication errors. After the data has been verified, a copy scratchpad
command transfers the data to the target memory location. This process ensures data integrity in an
environment that does not provide a reliable electrical contact.

The DS1963S SHA iButton has the following special features:
� 4096 bits of read/write nonvolatile memory organized as 16 pages of 256 bits each
� Eight of the 16 memory pages have individual 64-bit secrets and 32-bit read-only non-

rolling-over page write cycle counters
� On-chip 512-bit SHA-1 engine
� As a user token the device can support up to eight independent services
� Can function as a coprocessor for storing system secrets and computing the MACs needed

for authenticating user tokens and validating service data

Input
Block

Data Page
(32 bytes)

Secret Page
(8 bytes) Scratchpad

(15 bytes)
Scratchpad

MAC (20 bytes)

SHA engine places
the output MAC in
the scratchpad

SHA-1

1-Wire is a registered trademark of Dallas Semiconductor.

AN157

3 of 38

SHA iBUTTON MEMORY MAP
Data Memory with General Read/Write Access (16 pages, 32 bytes per page)

Page
Number

Address Range
(TA1 TA2)

Secret
Number

Counter
Number

Counter Increments

0 0000h to 001Fh 0 0 No
1 0020h to 003Fh 1 1 No
2 0040h to 005Fh 2 2 No
3 0060h to 007Fh 3 3 No
4 0080h to 009Fh 4 4 No
5 00A0h to 00BFh 5 5 No
6 00C0h to 00DFh 6 6 No
7 00E0h to 00FFh 7 7 No
8 0100h to 011Fh 0 0 With write
9 0120h to 013Fh 1 1 With write
10 0140h to 015Fh 2 2 With write
11 0160h to 017Fh 3 3 With write
12 0180h to 019Fh 4 4 With write
13 01A0h to 01BFh 5 5 With write
14 01C0h to 01DFh 6 6 With write
15 01E0h to 01FFh 7 7 With write

Secrets Memory with No Read Access (Eight 64-bit secrets)
Page

Number
Address Range

(TA1 TA2)
Description

16 0200h to 0207h Secret 0
0208h to 020Fh Secret 1
0210h to 0217h Secret 2
0218h to 021Fh Secret 3

17 0220h to 0227h Secret 4
0228h to 022Fh Secret 5
0230h to 0237h Secret 6
0238h to 023Fh Secret 7

Note that only writing to pages 8 to 15 will increment the page counters. Each counter and secret are
shared by a matching pair of data pages for certain operations. For example, pages 0 and 8 share
counter number 0 and secret number 0. Writing to page 8 will increase counter 0 by 1, but writing to
page 0 has no effect on counter 0. Executing Read Authenticated Page command on pages 0 or 8 will
both return counter 0 and the MAC computations will use secret 0.

AN157

4 of 38

Counter Memory with Read Access Only (Nine 32-bit counters)
Page

Number
Address Range

(TA1 TA2)
Description

19 0260h to 0263h Write Cycle Counter of Page 8
0264h to 0267h Write Cycle Counter of Page 9
0268h to 026Bh Write Cycle Counter of Page 10
026Ch to 026Fh Write Cycle Counter of Page 11
0270h to 0273h Write Cycle Counter of Page 12
0274h to 0277h Write Cycle Counter of Page 13
0278h to 027Bh Write Cycle Counter of Page 14
027Ch to 027Fh Write Cycle Counter of Page 15

20 0280h to 0283h Write Cycle Counter of Secret 0
0284h to 0287h Write Cycle Counter of Secret 1
0288h to 028Bh Write Cycle Counter of Secret 2
028Ch to 028Fh Write Cycle Counter of Secret 3
0290h to 0293h Write Cycle Counter of Secret 4
0294h to 0297h Write Cycle Counter of Secret 5
0298h to 029Bh Write Cycle Counter of Secret 6
029Ch to 029Fh Write Cycle Counter of Secret 7

21 02A0h to 02A3h PRNG Counter
(SHA engine execution counter)

USING SHA iBUTTON FOR E-PAYMENT APPLICATIONS
The SHA iButton has been designed to function as a user token as well as a coprocessor. The
coprocessor would perform all the MAC computations required for device authentication and service
data validation during a transaction session, thus eliminating the need for implementing SHA
computation code and significantly shortens the development cycle. One of the added benefits of using
a SHA iButton as the coprocessor is that the system secrets are stored inside the button and the button
cannot be probed to reveal its secrets. Throughout this document we assume that a SHA iButton
coprocessor is used in a local host for performing the necessary device authentication and service data
validation. A few terms used in this document are defined below:

local host – a hardware unit comprised of the necessary components so it can perform
electronic transactions with user SHA iButtons (or other ePurse tokens). Functionally a local
host may have three key components: transaction control unit (typically a microprocessor); user
interface such as a display and token receptor; and a coprocessor.

address number (AN), ROM ID, registration number, serial number – used
interchangeably, refers to a factory lasered 64-bit number that guarantees the global uniqueness
of the a DS1963S or any other 1-Wire devices.

AN157

5 of 38

transaction control unit (TCU) – a component (typically a microprocessor) that
communicates between a coprocessor and the user tokens to perform device authentication and
service data validation.

system authentication secret, master authentication secret – used interchangeably, refer to a
secret installed in the coprocessor for the purpose of authenticating user devices.

device authentication secret – a secret installed in the user iButton so that the local host could
verify if it belongs to the system. Device authentication secret is made unique to the individual
user device by binding the system authentication secret with the user device’s address number.

system signing secret, master signing secret – used interchangeably, refer to a secret installed
in the coprocessor for the purpose of signing and validating service data.

signing signature – a message authentication code (MAC) computed from the service data,
system signing secret, and other service and device specific data. The signing signature is
usually embedded in the service data page so that the service data can be quickly verified by
the local host.

service data, user data, application data, account data, transaction data – data that
completely represents a service, such as for an access control or an e-payment application.

user device, user token – a digital carrier of service data for digital authentication or electronic
payment applications. In this document the DS1963S SHA iButton is implied whenever user
device or user token is referenced.

coprocessor – in the context of this document, a coprocessor is a computing unit capable of
performing all the necessary MAC computations for conducting a transaction.

SERVICE INSTALLATION
To use SHA iButtons for device authentication and data validation, proper data and secrets must be
installed in both the coprocessor and the user iButtons — a process often referred to as service
initialization. Two secrets are installed in the coprocessor: system authentication secret and system
signing secret. The system authentication secret is used to create a unique authentication secret for
each user device and to verify if a user device belongs to the system. The system signing secret is used
to generate the signing signature and to verify if the service data is valid. Only one secret needs to be
installed in the user iButton: the unique device authentication secret. It is important to note that the
user device (SHA iButton) authentication secret is made unique and different from the system
authentication secret by using the user device address number as part of the input for computing the
device secret.

There are two types of service data: static and dynamic. Static service data is never changed during a
transaction while dynamic service data is always updated at each transaction. For example, the service
data for an office or hotel access control application containing timed access privileges information
needs to be validated but is not modified by the lock processor (local host). On the other hand, a
vending machine or a parking meter needs to debit an appropriate amount from the account and
digitally re-sign the reduced balance data so that it can be validated again by other local hosts on the
system. Service data protection may not be necessary if the system only needs to know whether a user
device belongs to the system (authorized user) and does not make transaction decision based on the
contents of the service data

AN157

6 of 38

In general, an e-payment application deployment includes the following steps:
For service installation:

(1) Installing system authentication secret into a SHA iButton coprocessor.
(2) Installing system signing secret into a SHA iButton coprocessor (if data protection is

needed)
For each user device:

(3) Installing user device authentication secret into the user SHA iButton
(4) Installing the signed service data into the user SHA iButton (if data protection is needed)

For conducting a transaction:
(5) Performing user device authentication using a SHA iButton coprocessor
(6) Performing user data validation using a SHA iButton coprocessor (if data protection is

needed)

DEVICE AUTHENTICATION
To authenticate a user SHA iButton, the TCU would ask the coprocessor to compute a random
challenge1 and sends it over to the user iButton and ask it to compute a response MAC using the Read
Authenticated Page command. The user iButton takes the challenge, the service data, its own address
number, and its authentication secret to compute the response MAC. The response MAC is then read
by the local host for comparison with its own computation later. To verify the response MAC, the TCU
would ask the coprocessor to first re-compute the user iButton’s unique device authentication secret
using the user device’s address number and the system authentication secret. The TCU would then ask
the coprocessor to compute a MAC using the re-computed device authentication secret and the
challenge code that it sent over to the user iButton. This coprocessor computed MAC is then compared
with the response MAC read from the user iButton to determine if the user device is legitimate. This
two-step process is necessary because the local host cannot read the user device’s secret and that the
user device authentication secret is different from the system authentication secret. Note that device
authentication only requires the user device to carry the right authentication secret, it does not care
about the service data contents.

SERVICE DATA PROTECTION
Service data protection is achieved by embedding a system generated MAC (signing signature) with
the service data. The signing signature is generated using the system signing secret, service data,
service data page number and the page counter value, and the user device address number. Using the
signing signature one can detect any unauthorized changes and prevent replaying of the service data.
To validate the service data, the TCU would ask the coprocessor to re-compute a MAC (signing
signature) from the system signing secret and all the service and user device data items obtained at the
time of service. This MAC is then compared with the embedded signature to determine if the data is
valid. For dynamic data services, after the service data is updated a new signing signature is computed
to reflect the data change and the new page counter value. This new signature is then embedded in the
service data and saved to the user device.

1 This challenge is random in the sense that it is affected by the SHA engine counter value, which increments each time
the SHA engine is exercised, and that a user iButton would very unlikely get the same challenge twice. See AN152 for
more information on generating challenges and secrets.

AN157

7 of 38

STATIC DATA SERVICES
Static data services only require the device to be authenticated and service data validated in order for a
service decision to be made. Device authentication refers to the process that verifies if a user device
belongs to the system. Device authentication may be the only procedure required in certain access
control applications. There are variety of ways to perform device authentication: (a) reading a device’s
address number (AN) and searches through a database to see if it belongs to the system; (b) performing
a challenge and response procedure to test if the device carries a valid secret; (c) other methods. SHA
iButtons use the second method to perform device authentication. In this challenge and response
method, the local host asks the user device to compute a response MAC based on its hidden
authentication secret, the memory data linked to that secret, and the challenge code that the local host
provides. The user device never reveals its secret to the outside world. This authentication mechanism
makes the system very secure, particularly beneficial if the communication link between the local host
and user device is not secure. Furthermore the local host would issue a different challenge each time a
user device requests for a service so that the response MAC would be different each time, thus making
intercepting the communication data bits useless.

The typical steps for performing a static data service are as follows (see Figure 2)
(1) Read address number (AN) from the user iButton
(2) If it is not a SHA iButton then branch to other decision process
(3) Authenticate the user iButton using a challenge and response sequence; quit if the user

iButton does not belong to the system
(4) Does the service data need to be validated? If no, provide service.
(5) Check if the service data is valid; quit if not
(6) Provide service

STATIC DATA SERVICE DECISION TREE Figure 2

No

Grant

No

No

Yes

Yes

Yes

No

Need data
validation?

Perform service
data validation

Is data
valid?

Yes

SHA
iButton?

Read address number
from user iButton

Authenticate user
SHA iButton

Belongs to
the system?

Deny

AN157

8 of 38

DYNAMIC DATA SERVICES
In addition to the authentication and data validation processes performed for conducting a static data
service, a service using dynamic data requires additional steps to modify the service data, recreate a
signature and save the re-signed data to the user iButton. The typical steps are outlined below:

(1) Read address number (AN) from the user iButton
(2) If it is not a SHA iButton then branch to other decision process
(3) Authenticate the user SHA iButton using a challenge and response sequence; quit if the

user SHA iButton does not belong to the system
(4) Does service data permit the requested service, quit if not.
(5) Perform service data validation; quit if not valid
(6) Modify the service data and create a new signature
(7) Save the new service data with signature to user iButton
(8) Perform user device authentication again to ensure that the service data has been updated

in the original user device
(9) Provide service

DYNAMIC DATA SERVICE DECISION TREE Figure 3

yes

yes

no

yes

SHA iButton?

yes

yes

Service data
valid ?

Grant Service

Create new service data signature

Perform service data validation

no

Save updated service data and
signature to the user iButton

no

no

no

Read the address number
from user iButton

Authenticate user
SHA iButton

Belongs to the
system?

Data permits the
req. service?

Stop

Authenticate the user iButton
and verify service data again

valid ?
no

AN157

9 of 38

HOSTING MULTIPLE SERVICES
The 1-Wire File Structure (OWFS2) may be employed to facilitate the coexistence of multiple services
in one user iButton — with data for each service stored in its own service file. Multiple files are
organized in a directory entry table for efficient access. The local host reads the file entry for a service
in the directory table to acquire the actual page location and the number of pages used for that service.
The actual service data is read from the service file.

Special files may also be stored in a coprocessor and other iButtons to identify them as special devices.
For example we create a file called COPR.0 in a SHA iButton to identify it as the coprocessor and
store in that file all the necessary data needed for the TCU to complete a transaction. We may create
another file called COLL.102 in a iButton to identify it as a mobile data collector that is authorized to
retrieve data from a local host to be dumped into a central database later. When a transaction control
unit (TCU) starts up it reads information from the coprocessor iButton to prepare itself ready for
conducting transactions. When a TCU detects a data collection button it then performs the necessary
authentication and outputs the requested data.

THE COPROCESSOR FILE
A DS1963S SHA iButton is configured to function as a coprocessor by installing the appropriate
system secrets and data into it. For static data services without data validation, only the system
authentication secret is installed in the coprocessor. For dynamic data services or static data services
requiring data validation both system authentication secret and system signing secret must be installed
in the coprocessor. The coprocessor also performs all the necessary MAC computations for
authenticating the user iButton and validating the service data. In our sample implementation, a
coprocessor a file (COPR.0) is created in a SHA iButton to identify it as the coprocessor. COPR.0
contains all the data needed by a transaction control unit in order to perform a transaction.

COPROCESSOR FILE DATA STRUCTURE3 Table 1
Structure of Coprocessor File COPR.0

No. of
Bytes

Sample Data Remarks

Name of the service
data file

5 DLSM.102 Only the basename (DLSM) and
extension are stored, not the separator(.).
The extension byte is stored in hex
(66h=102 d)

Signing page number 1 8 Legal choices are page 0 or 8. Page 0 is
used for file entry table.

Authentication page
number

1 7 Starting at a high enough page number to
give enough pages for this file’s storage.

Workspace page
number

1 9 Needed by the coprocessor for recreating
user device unique authentication secret

2 The 1-Wire File Structure (OWFS) provides a directory structure for data residing in 1-Wire devices including
iButtons. It allows named files to be randomly accessed as they are on other file systems. The definitions and rules of
the OWFS are sufficient to store multiple files in nested directories using device capacities up to 16M bytes. These
devices may be organized as 2...65535 pages of 32...256 bytes. See Dallas Semiconductor/Maxim Application Note
114 for more information on OWFS structure and implementation support.

3 In the sample service implementation all data bytes are written least significant bytes first

AN157

10 of 38

Structure of Coprocessor File COPR.0
during a transaction.

Version number 1 1 Version number is used by the service
provider to track service configuration
changes.

Installation date code 4 04 0E 00 63 h installation code stored in M D YY
format. YY=number of years since 1900.
For example 4/14/1999 = 04 0E 00 63

Device authentication
secret binding data

39 39 FFh bytes Used by the service provider to bind
authentication secret to a user SHA
iButton. The first 32 bytes of this block is
written to a data page and the remaining 7
bytes written to the scratchpad when
computing the device authentication
secret. The scratchpad actually contains
15 bytes that are input to the SHA engine.
The other 8 bytes are the page number (1
byte) and the device address number
without the CRC byte.

Service sign code 3 3 00h bytes This data is part of the 15 bytes written to
the scratchpad for creating service data
signature. The other 12 bytes are page
number (1 byte), page counter (4 bytes),
and the device address number without
the CRC (7 bytes).

Provider name length
(svcNameLen)

1 20 Length of the service provider name,
adjustable.

Signature length
(signLen)

1 20 Length of the signature block in user
account page. This value may be reduced
to allow space for other data (auxiliary
data)

Auxiliary data length
(auxDataLen)

1 0 Length of the auxiliary data block,
adjustable. A zero length provides no
additional data

Name of service
provider

20 Dallas
Semiconductor

A service provider name or description.
The length is limited to the Provider name
length entry.

Signature initial value 20 20 00h bytes Length of initial block must match the
Signature length entry above. These bytes
are set in place of the signature block in
user data page for creating the data
signature.

Auxiliary data 0 Length of auxiliary data must match the
Auxiliary data length entry above.

Encryption algorithm
code

1 0 A flag indicating the type of encryption or
encoding mechanism employed for
securing the contents of this file.

DS1961S flag 1 0 A boolean flag indicating that the secret
installation for this coprocessor was
performed with appropriate padding for

AN157

11 of 38

Structure of Coprocessor File COPR.0
use with a DS1961S.

Total number of bytes 100

Note that the length of COPR.0 varies with the values of the three length parameters: Provider Name
Length, Signature Length, and Auxiliary Data Length. These parameters are provided to allow for
additional custom features that the software supports but need to be enabled by the data in COPR.0
file.

THE SERVICE DATA FILE
In the sample implementation, we create a service file DLSM.102 in each user SHA iButton to identify
it as a user iButton. The file DLSM.102 contains the following data:

SERVICE FILE DATA STRUCTURE Table 2
Structure of Service File DLSM.102

No. of
bytes

Sample Data Remarks

Data type code 1 0 This field may be used to further indicate the
type of transaction data. For example 0 for
dynamic and 1 for static data etc.

Service data
signature

20 [computed] To be computed by the local host.

Multiplier
/conversion factor

2 8B48h This data may be used to convert one quantity
to another. In the sample service we combine
the international currency code for USD and
0.01 conversion factor for converting from
cents to dollar. The specific format is usually
service dependent.

Account balance 3 01 86 A0 h 100000 cents ($1000)
Transaction ID 2 1234h Transaction ID may be used to link more

reference data to a transaction.
Total bytes 28

Note that the file content is 28 bytes long but 32 bytes are stored in the page in the following format
(see AN114 for more information):

File length
(1 byte)

File contents
(28 bytes)

File continuation pointer
(1 byte)

CRC-16
(2 bytes)

When the local host detects a user SHA iButton it reads from the directory entry table of the user SHA
iButton the page number (13 in our sample service) for file DLSM.102 and performs device
authentication using the secret associated with page 13 (secret number 5).

AN157

12 of 38

INSTALLING SERVICE DATA
Proper service data and secrets must be installed into the coprocessor and a user iButton before any
transaction can be conducted with them — a process also referred to as device initialization. Device
authentication is needed for both static and dynamic data services. If the service uses dynamic data
(such as e-payment applications), the service data needs to be verified and updated during each
transaction. The coprocessor would contain two system secrets: one for authentication and one for
verifying and re-signing the service data. The steps for installing the two system secrets are identical
except that the system signing secret must be installed in secret number 0, and is usually computed
using different input data (partial phrases). On the user device side, protection of service data is
achieved by embedding in the service data page a signature computed from the service data and the
system signing secret. The basic steps for installing a service into a coprocessor and on a user SHA
iButton are as follows, with the detailed description provided in the sections below.

For services requiring no data validation:
(1) Install the system authentication secret into the coprocessor
(2) Install a unique device authentication secret into the user iButton by binding the system

authentication secret with the user iButton address number and the service data page
number

(3) Write service data to the user iButton (if needed)

For services requiring data validation:
(1) Install the system authentication secret into the coprocessor
(2) Install the system signing secret into the coprocessor
(3) Install a unique device authentication secret into the user iButton by binding the system

authentication secret with the user iButton address number and the service data page
number

(4) Compute a signing signature from the system signing secret, service data, page number
and write cycle counter value of the service data page, and the user device address
number

(5) Embed the signing signature with service data and write it to the user iButton

SECRET GENERATION IN SHA iBUTTON
Installing a secret into a SHA iButton should be done by writing data (partial phrases, see AN152 for
more information) to the designated page and scratchpad, computing a MAC from the data, and
copying the selected bytes of the MAC to the target secret number (see Figure 4). Directly writing to
the secret should be avoided. Generating a secret via the on-chip SHA engine also allows multiple
parties to participate in the secret installation process (called secret sharing), yet no single party can
reproduce the system secret without the cooperation of others. This process significantly reduces the
risk of secret exposure. The sequence for generating a system secret (authentication or signing) from N
partial phrases (partials[k], k=0 to N-1) are outlined in Figure 5. At each iteration the MAC
computation uses input from two sources: 47 bytes of input data (32 bytes written to a data page and
15 bytes written to the scratchpad), and the current contents of the secret (8 bytes). The secret is
updated using the new MAC just computed before the next iteration. At the start of the loop (k=0)
input from the secret assumes a null value. Since each step produces a new secret that becomes the
input for the next calculation, the final system secret is a function of all the preceding input partial
phrases.

The above sequence is equally applicable to the computation of system authentication secret and
system signing secret except that the system signing secret must be installed in secret number 0

AN157

13 of 38

(cSignSecretNum=0) of the coprocessor. A general purpose function is implemented for installing a
system secret from multiple partial phrases into a SHA iButton: installSeystemSecret, see section 0 for
implementation details.

SECRET GENERATION IN SHA iBUTTON Figure 4

SYSTEM SECRET GENERATION USING SECRET SHARING Figure 5

THE SAMPLE SERVICE
Our sample service is an e-payment service with its account balance debited and re-signed with a new
signing signature at each transaction. Note that device authentication does not verify the contents of the
service data page, but only involves the device authentication secret associated with the service data
page in the user iButton. For service data signing, the system wide signing secret is stored in
coprocessors, not in user iButtons. Therefore, we are able to use only one data page and one secret to
host an e-payment application: a data page for service data and its matching secret for device
authentication. Symbols and variables used in our sample service are summarized below for quick
reference. Note that in a multiple services hosting device, the service data page number

8 of the 20 MAC bytes are placed in the
scratchpad after SHA computation
(Compute First Secret or Compute Next
Secret command) completes, which can be
copied to a secret page using the Copy
Scratchpad command

Data page
32 bytes

Scratchpad
15 bytes

Secret
8 bytes

ScratchpadSHA-1

SHA-1
Data page:

32 bytes of partial[k]

Scratchpad
15 bytes of partial[k]

Secret
S[k]

note S[0]=0

Commands used:
Compute First Secret, k=0
Compute Next Secret, k>0
Copy Scratchpad

Before the next iteration starts, the secret page is
updated with the partial MAC result placed in the
scratchpad after the completion of the SHA
computation

Scratchpad
MAC

Loop k=0 to N-1

End loop

AN157

14 of 38

(uSignDataPage) and authentication secret number (uAuthSecreNum) could be different in each user
iButton.

The pages used in user SHA iButton are as follows:

The pages used in coprocessor SHA iButton are as follows:

LIST OF VARIABLES AND VALUES Table 3
List of Variables

Variable Sample Service
Value

Description

cAN coprocessor iButton address number
uAN user iButtonaddress number
cAuthDataPage 7 system authentication data page, in coprocessor
cAuthSecretNum 7 system authentication secret number, in

coprocessor
cSignDataPage 8 system signing data page, in coprocessor
cSignSecretNum 0 system signing secret number, in coprocessor
uAuthDataPage 13 user device authentication data page
uAuthSecretNum 5 user device authentication secret number
uSignDataPage 13 service data page number in user iButton
svcName Dallas

Semiconductor
service provider name, padded on the right with
00h bytes if needed

Data page 13 Secret 5

User iButton setup
service data page (uSignDataPage=13)
device authentication secret (uAuthSecretNum=5)

Coprocessor iButton setup
system authentication secret
(cAuthSecretNum=7)
system signing secret
(cSignSecretNum=0)
workspace secret
(wkSecretNum=1)

Coprocessor iButton setup
system authentication data
page (cAuthDataPage=7)
system signing data page
(cSignDataPage=8)
workspace data page
(wkDataPage=9)

Data page 8 Secret 0

Data page 7 Secret 7

Data page 9 Secret 1

AN157

15 of 38

List of Variables
Variable Sample Service

Value
Description

nAuthPartials 1 number of partial phrases for computing system
authentication secret

nSignPartials 1 number of partial phrases for computing system
signing secret

authPartial[j]
j=0 to nAuthPartials-1

47 FFh bytes partial phrases for computing the system
authentication secret - 47 bytes in each array
element: 32 bytes written to a data page and 15
bytes to scratchpad

signPartial[j]
j=0 to nSignPartials-1

47 FFh bytes partial phrases for computing the system signing
secret - 47 bytes in each array element: 32 bytes
written to a data page and 15 bytes to scratchpad

authBind 39 00h bytes device authentication secret binding data - a 39-
byte block used for binding the system
authentication secret to a user device. The first 32
bytes are written to a data page and the remaining
7 bytes written to the scratchpad for computing
the device authentication secret.

signCode 3 00h bytes a 3-byte code used for creating the service data
signing signature

signInitial 20 00h bytes initial value for computing the service data
signing signature

uData service data page contents
TA1, TA2, ES device address and status registers
uSignDataPageWCC write cycle counter of the service data page, in

user iButton (=uAuthDataPageWCC)
cFileName COPR.0 coprocessor file name, stored in coprocessor
uFileName DLSM.102 service file name, stored in user iButton
wkDataPage 9 workspace data page number in coprocessor
wkSecretNum 1 workspace secret number, in coprocessor

INSTALLING SYSTEM AUTHENTICATION SECRET IN COPROCESSOR
The command sequence and data flow for installing the system authentication secret in a SHA iButton
are summarized below. The API function (installSystemSecret) implementation details are presented in
section Appendix A.

AN157

16 of 38

INSTALLING SYSTEM AUTHENTICATION SECRET IN COPROCESSOR
Figure 6

To install the system authentication secret in a coprocessor using APIs:
s=installSystemSecret(cAN,cAuthDataPage, cAuthSecretNum, nAuthPartials,authPartial)
s=eraseDataPage(cAN,cAuthDataPage)

The call to eraseDataPage (implemented in section 0) erases the last partial phrase written to the
coprocessor to prevent it from being exposed.

Please note that in this document for brevity reasons the API calls listing ignores any error checking
and retry iterations. In an actual implementation each call return status should be checked for errors
and appropriate iteration loops be wrapped around the call. For example the code snippet for installing
the system authentication secret in a coprocessor with appropriate error checking and retries my look
like below:

// iteration count limit
loopLimit = 5

�

Coprocessor
System authentication secret is
installed in secret cAuthSecretNum
(=7) of coprocessor.
Partial phrases are written to page
cAuthDataPage (=7) and scratchpad
for computing the secret.

�

�

�

�

Data page 7

SHA-1

Secret 7

authPartial[k][0:31]

Scratchpad

authPartial[k][32:46]

Install System Authentication Secret in Coprocessor
 Loop k=0 to nAuthPartials-1

� write first 32 bytes of authPartial[k] to scratchpad [Write Scratchpad]
� copy data from scratchpad to page cAuthDataPage [Copy Scratchpad]
� write the remaining 15 bytes of authPartial[k] to scratchpad [Write Scratchpad]

� compute the secret; MAC is placed in scratchpad
[Compute First Secret], if k=0
[Compute Next Secret], if k>0

� prepare for copying the secret by writing dummy bytes to the scratchpad
using the target secret address [Write Scratchpad]

� copy secret from scratchpad to secret cAuthSecretPage [Copy Scratchpad]
 End loop

 �

�

�

AN157

17 of 38

s=1
loop=0
do while (loop<loopLimit and s<>0)

// the call returns 0 if no error
s=installSystemSecret(cAN,cAuthDataPage, cAuthSecretNum, nAuthPartials,authPartial)
loop=loop+1

end loop

// quit if we still have errors after preset number of tries
if(s<>0) then

exit
end if

s=1
loop=0
do while (loop<loopLimit and s<>0)

// the call returns 0 if no error
s=eraseDataPage(cAN,cAuthDataPage)
loop=loop+1

end loop

// quit if we still have errors after preset number of iterations
if(s<>0) then

exit
end if
…continue …

INSTALLING SYSTEM SIGNING SECRET IN COPROCESSOR
The command sequence and data flow for installing the system signing secret in a SHA iButton are
identical to that for installing system authentication secret, except with different partial phrases and
target data page and target secret (system signing secret must be installed in secret 0).

To install the system signing secret in a coprocessor using the APIs:
s=installSystemSecret(cAN,cSignDataPage, cSignSecretNum, nSignPartials,signPartial)
s=eraseDataPage(cAN,cSignDataPage)

Coprocessor
System signing secret is installed in secret
cSignSecretNum (=0) of coprocessor.
Partial phrases are written to page
cSignDataPage (=8) and scratchpad for
computing the secret.

Data page 8

Scratchpad

SHA-1

Secret 0

AN157

18 of 38

Note that system signing secret must be installed in secret 0 (cSignSecretNum=0), and its matching
data page cSignDataPage can be either 0 or 8. In our sample service page 0 is used for OWFS
directory, so we use cSignDataPage=8.

INSTALLING DEVICE AUTHENTICATION SECRET IN USER iBUTTON
To install the user iButton’s device authentication secret, the system authentication secret is installed
into the user iButton first (secretAuthSystem), then a unique device secret is computed from the system
binding data (bindData), the system authentication secret (secretAuthSystem), the service data page
number (uSignDataPage) and the address number (uAN) of the user iButton. It is the user iButton’s
address number that makes the device authentication secret unique to the iButton. The two step process
is outlined below and an API (bindSecretToiButton) is implemented (see section 0 for details) for the
second step.

BINDING DEVICE AND SERVICE DATA TO CREATE THE DEVICE
AUTHENTICATION SECRET

User iButton Auth Secret Step 1
System authentication secret
(secretAuthSystem) is installed in
secret uAuthSecretNum (=5) of user
iBuitton. Partial phrases are written
to page uAuthDataPage (=13) and
scratchpad for computing the secret.

Data page 13

Scratchpad

SHA-1

Secret 5

 bindData[0:31]

User iButton Auth Secret Step 2
Device authentication secret
(secretAuthDevice) is installed in
secret uAuthSecretNum (=5) of user
iButtonby binding the system
authentication secret
(secretAuthSystem) with service and
user iButtonspecific data
(uAuthDataPage, uAN).

Data page 13

Scratchpad

SHA-1

Secret 5

�

�

�

�

 pad_bind

AN157

19 of 38

Pad the binding data, service and user device data in scratchpad for computing the unique device
authentication secret (pad_bind):

offset 0:7 8:11 12:12 13:19 20:22 23:31
of bytes 8 bytes 4 bytes 1 byte 7 bytes 3 9 bytes
data 00h bindData[32:35] uAuthDataPage uAN[0:6] bindData[36:38] 00h

Bind System Authentication Secret to User iButton
� write first 32 bytes of bindData to scratchpad [Write Scratchpad]

To install a device authentication secret using the APIs:
s=installSystemSecret(uAN,uAuthDataPage,uAuthSecretNum,nAuthPartials,authPartial)
s=bindSecretToiButton(uAN,uAuthDataPage,uAuthSecretNum,bindData,uAuthDataPage,uAN)
s=eraseDataPage(uAN,uAuthDataPage)

Install System Authentication Secret in User iButton
Loop k=0 to nAuthPartials-1
� write first 32 bytes of authPartial[k] to scratchpad [Write Scratchpad]
� copy data from scratchpad to page uAuthDataPage [Copy Scratchpad]
� write the remaining 15 bytes of authPartial[k] to scratchpad [Write Scratchpad]

� compute the secret; the result MAC is placed in scratchpad
if k=0 [Compute First Secret]
if k>0 [Compute Next Secret]

� prepare for copying the secret by writing dummy bytes to the scratchpad using the target
secret address [Write Scratchpad]

� copy secret from scratchpad to secret uAuthSecretNum [Copy Scratchpad]
End loop

Binding Device and Service Data to Create the Unique Device Authentication Secret

� write first 32 bytes of bindData to scratchpad [Write Scratchpad]
� copy data from scratchpad to page uAuthDataPage [Copy Scratchpad]

� write the padded binding data block (pad_bind) composed of
remaining 7 bytes of bindData, the authentication data page
number (uAuthDataPage), and the user iButton’s address number
(uAN, without CRC) to scratchpad [Write Scratchpad]

� compute the secret [Compute Next Secret];
the result MAC is placed in scratchpad

� prepare for copying the secret by writing dummy bytes to the
scratchpad using the target secret address [Write Scratchpad]

� copy secret from scratchpad to secret uAuthSecretNum
[Copy Scratchpad]

�

�

�

�

AN157

20 of 38

CREATING SERVICE DATA SIGNATURE IN COPROCESSOR
The service data signature is computed from the service data and the system signing secret. The
signature may be embedded4 in the service data page and verified by a local host during each
transaction. For example, in our sample service we embed the signature in the service data page as
follows (the leading length byte, continuation pointer, and CRC-16 bytes are needed for OWFS):

Embed Data Signature in Service Data Page

offset 0:0 1:1 2:21 22:23 24:26 27:28 29:29 30:31

of bytes 1 byte 1 byte 20 bytes 2 bytes 3 bytes 2 bytes 1 byte 2 bytes
data length data type signature

bock
conversion

factor
account
balance

trans ID cont.
pointer

CRC-
16

Since the signature occupies part of the service data page, the signature block must be initialized to
some known value (signInitial)5 for computing the signature. Note that in order to prevent
unauthorized copying and reuse of the service data (creating “money”) the signature computation
should take as input the user device specific data such as address number of the device (uAN), page
number (uSignDataPage) and the write cycle counter value (uSignDataPageWCC) of the service data
page. It is also important that the service data be installed into a page whose write cycle counter
increments with each write operation if copying of the service data is to be prevented. The process for
creating a service data signature is implemented in API createDataSignature, see section 0 for
implementation details.

// create signature, the passed uData_ini has the signature block initialized to signInitial
sig = createDataSignature(cAN,cSignDataPage,cSignSecretNum,uData_ini,signCode,

uAN,uSignDataPage,uSignDataPageWCC)

Padded Signing Data Block (pad_signCode):

offset 0:7 8:11 12:18 19:19 20:22 23:31
of
bytes

8 padding
bytes

4 bytes 7 bytes 1 byte 3 bytes 9 padding bytes

data 8 00h bytes uSignDataPageWCC+16 uAN[0:7] uSignDataPage signCode 9 00h bytes

4 Note that the signing signature does not have to be embedded in the service data page. It could be saved in a separate
page and thus leave the full 32-byte space for raw service data.
5 If signature is not embedded as part of the 32-byte service data page then no initialization is needed:
sig=createDataSignature(cAN,cSignDataPage,cSignSecretNum,uData,signCode,uAN,uSignDataPage,
uSignDataPageWCC)

6 WCC+1 becomes the new write cycle counter of service data page after the signed service data is written to it because
each writing to the page increments the cycle counter by 1 (on pages 8 to 15).

AN157

21 of 38

Coprocessor
Service data signature is computed from:
� the initialized service data (uData_ini),
� the system signing secret (at

cSignSecretNum=0)
� the system signing code (signCode)
� the user iButton address number uAN

(without the CRC)
� the service data page number

(uSignDataPage) and its page write cycle
counter value (uSignDataPageWCC)

Data page 8

Scratchpad

SHA-1

Secret 0

�

�

�

padded singing
data block

initialized
service data

Create Service Data Signing Signature in Coprocessor

� write uData_ini to scratchpad [Write Scratchpad]
� copy data from scratchpad to page cSignDataPage [Copy Scratchpad]

� write the padded signing data (pad_signCode) consisted of signCode,
uSignDataPageWCC, uAN (without the CRC), and uSignDataPage to
scratchpad [Write Scratchpad]

� compute the signature [Sign Data Page]; the result MAC is placed
in scratchpad

� read the signature MAC from scratchpad [Read Scratchpad]

�

�

�

�

�

AN157

22 of 38

SERVICE INSTALLATION SUMMARY
The key API calls for installing a service are summarized below.

STATIC DATA SERVICES WITHOUT DATA VALIDATION
Installing service data into the coprocessor
// install the system authentication secret into the coprocessor
s=installSystemSecret(cAN,cAuthDataPage, cAuthSecretNum, nAuthPartials,authPartial)

// erase the partial phrase so it is not accidentally exposed
s=eraseDataPage(cAN,cAuthDataPage)

Installing service data into the user iButton
// install the system authentication secret into the user iButton
s=installSystemSecret(uAN,uAuthDataPage,uAuthSecretNum,nAuthPartials,authPartial)

// bind service data, user device ID with system secret to create a unique device auth secret
s=bindSecretToiButton(uAN,uAuthDataPage,uAuthSecretNum,bindData,uAuthDataPage,uAN)

s=eraseDataPage(uAN,uAuthDataPage) // erase the binding data from the data page

SERVICES WITH DATA VALIDATION
Installing service data into the coprocessor
// install the system authentication secret into the coprocessor
s=installSystemSecret(cAN,cAuthDataPage, cAuthSecretNum, nAuthPartials,authPartial)

// install the system signing secret into the coprocessor
s=installSystemSecret(cAN,cSignDataPage, cSignSecretNum, nSignPartials,signPartial)

s=eraseDataPage(cAN,cSignDataPage) // erase the partial phrase so it is not accidentally exposed
s=eraseDataPage(cAN,cAuthDataPage)

Installing service data into the user iButton
// install the system authentication secret into the user iButton
s=installSystemSecret(uAN,uAuthDataPage,uAuthSecretNum,nAuthPartials,authPartial)

// bind service data, user device ID with system secret to create a unique device auth secret
s=bindSecretToiButton(uAN,uAuthDataPage,uAuthSecretNum,bindData,uAuthDataPage,uAN)

// create the service data signature in coprocessor
sig=createDataSignature(cAN,cSignDataPage,cSignSecretNum,uData_ini,signCode,
uAN,uSignDataPage,uSignDataPageWCC)

// embed the signature in service data page
sData= …

// write the service data with the embedded signature to user iButton
s=writeDataPage(uAN,uSignDataPage,sData)

AN157

23 of 38

CONDUCTING TRANSACTIONS
Conducting transactions with SHA iButtons may require two steps: the local host authenticating the
user SHA iButton and updating the service data. A local host may consist of three logical components:
coprocessor, transaction control unit (TCU) and a user interface such as display, token receptor, and
service dispenser. A TCU maybe a personal computer or a microcontroller. It is important that the
coprocessor and other elements containing secret and confidential information be physically and
electronically secured inside an appropriate security boundary.

AUTHENTICATING THE USER iBUTTON
The user SHA iButton authentication process is depicted in Figure 7, which can be expressed in API
calls as follows:

challenge=createChallenge(cAN,cAuthDataPage) // compute a challenge in the coprocessor

// challenge the user iButton for an authentication response
// the API call returns the service page data, page counter, and the response MAC
// uData=uResp[0:31]; uSignDataPageWCC=uResp[32:35]; uMAC=uResp[36:55]
uResp=answerChallenge(uAN,uAuthDataPage,challenge)

// recreate user iButton’s device authentication secret in coprocessor
s=bindSecretToiButton(cAN,cAuthDataPage,wkSecretNum,bindData,uAuthDataPage,uAN)

// verify the response MAC in the coprocessor
s=verifyAuthResponse(cAN,wkDataPage,uData,uAN,uAuthDataPage,

uSignDataPageWCC,challenge,uMAC)

AN157

24 of 38

USER SHA iBUTTON AUTHENTICATION PROCESS Figure 7

padded binding data block (pad_bind)
8 bytes 4 bytes 1 byte 7 bytes 3 9 bytes
8 00h bytes bindData[32:35] uAuthDataPage uAN[0:6] bindData[36:38] 9 00h bytes

padded challenge data block (pad_challenge)
8 padding bytes 4 bytes 1 byte 7 bytes 3 bytes 9 padding bytes
8 00h bytes uAuthDataPageWCC uAuthDataPage uAN[0: 6] challenge 9 00h bytes

GENERATING A RANDOM CHALLENGE IN COPROCESSOR
To generate a random challenge in the coprocessor, the TCU would simply ask the coprocessor to
perform a Compute Challenge operation. TCU can pick any 3 of the 20 MAC bytes placed in the
scratchpad by the SHA engine upon completion of the command. The API function is called as
follows, implementation details are presented in Appendix A.

challenge = createChallenge(cAN, cAuthDataPage)

Verify User iButton’s Authentication Response, in coprocessor iButton
� Recreate user iButton’s authentication secret in workspace secret wkSecretNum of coprocessor

� Write 32 bytes of bindData to scratchpad [Write Scratchpad]
� copy data to page cAuthDataPage [Copy Scratchpad]
� Write the padded binding data block (pad_bind) made of 7 bytes of bindData, uAN, uAuthDataPage,and

uAuthDataPageWCC to scratchpad [Write Scratchpad]
� Compute the device secret [Compute Next Secret]
� prepare for copying the secret by writing dummy bytes to Scratchpad with the target secret address
� Copy secret to secret number wkSecretNum [Copy Scratchpad]

� Compute the authentication MAC
� Write uData to scratchpad [Write Scratchpad]
� Copy uData to page wkDataPage [Copy Scratchpad]
� Write the padded challenge block (pad_challenge) to scratchpad [Write Scratchpad]
� Compute a MAC [Validate Data Page]

� Compare this MAC with uMAC [Match Scratchpad]. If the two are equal then the user iButton is authentic.

Generate a Random Challenge in Coprocessor
� Generate a random challenge in coprocessor, using page cAuthDataPage

[Compute Challenge]
� Read the challenge from the coprocessor (=challenge) [Read Scratchpad]

Challenge User iButton for Authentication Response, in user iButton
� Write challenge to user iButton’s scratchpad [Write Scratchpad]
� Generate a response MAC in user iButton using page uAuthDataPage [Read Authenticated Page]. The

command also returns the service data page counter (uSignDataPageWCC) and service data (uData); note that
uAuthDataPage= uSignDataPage

� Read user iButton’s address number (uAN), and the authentication response MAC (uMAC) [Read ROM, Read
Scratchpad]

AN157

25 of 38

CHALLENGING THE USER iBUTTON FOR AUTHENTICATION RESPONSE
TCU sends the challenge (challenge) to the user iButton and asks it to compute a response MAC based
on the challenge (written to scratchpad offsets 20 to 22) and its device authentication secret. The API is
implemented in Appendix A.

uResp=answerChallenge(uAN,uAuthDataPage,challenge)

Upon return uResp contains the service data (uData), the page write cycle counter
(uAuthDataPageWCC), and the response MAC (uMAC).

uData=uResp[0:31]
uAuthDataPageWCC=uResp[32:35]
uMAC=uResp[36:55]

VERIFYING THE USER iBUTTON’S AUTHENTICATION RESPONSE
To verify an user iButton's response one must first recreate the user iButton’s device authentication
secret in the coprocessor. Note that the recreated authentication secret is not readable by the TCU, nor
does it need to be. Authentication is not achieved by direct comparison of authentication secrets, rather
of the results of SHA computations based on the authentication secret and other service and device
specific data. After the user authentication secret has been recreated in the coprocessor, the Validate
Data Page command is executed to compute the authorization MAC for comparison. The coprocessor
stores its computation result (cMAC) in the scratchpad, hidden from external read. Match Scratchpad
command is issued to compare the readout from the user iButton (uMAC) with cMAC in the scratchpad
of the coprocessor.

The first step of the authentication process, recreating the user device authentication secret in the
coprocessor, is the same as installing a device authentication secret in the user iButton during the
service installation process except that this time the target device is the coprocessor and the secret is
installed into an unused secret number of the coprocessor. The second step of verifying an user
iButton’s response MAC (uMAC) is implemented in Appendix A.

// recreate user device’s unique authentication secret in coprocessor – to an unused
// secret number (wkSecretNum)
s=bindSecretToiButton(cAN,cAuthDataPage, wkSecretNum, bindData, uAuthDataPage, uAN)

// verify the user device’s response MAC in coprocessor
s=verifyAuthResponse(cAN,wkDataPage,uData,uAN,uAuthDataPage,

uAuthDataPageWCC,challenge,uMAC)

VERIFYING THE EMBEDDED SERVICE DATA SIGNATURE
A service data page is verified by checking its embedded signature (sign). First the signature block of
the service data page is set to a known initial value (signInitial) and a signature is re-computed in the
coprocessor (cSign). TCU then compares sign with cSign, if the two are the same then the service data
is valid. Note that we obtained the service data, write cycle counter of service data page while we
authenticated the user iButton.

To recreate the signature in a coprocessor, one first saves the signature (sign) and then initialize the
signature block of uData with signInitial to recover the original block (uData_ini) that was used to

AN157

26 of 38

generate the signature. We then use the user device and service parameters (address number and
service page number and counter) to recreate the signature:

cSign=createDataSignature(cAN,cSignPage, cSignSecretNum, uData_ini, signCode,
uSignDataPage, uAN, uSignDataPageWCC-1)

RE-SIGNING THE UPDATED SERVICE DATA
In dynamic data services, the service data is updated and a new signature is computed for re-signing
the service data. The process is identical to that of installing the initial service data in user iButton. If
uData_Update is the updated service data with the signature block initialized to signInitial, then the
new signature is created as follows:

sign=createDataSignature(cAN, cSignPage,cSignSecretNum, uData_Update,
signCode,uSignDataPage, uAN, uSignDataPageWCC)

SUMMARY OF CONDUCTING A TRANSACTION WITH THE SHA iBUTTONS
The key API calls for conducting a transaction are summarized below.

STATIC DATA SERVICES WITHOUT DATA VALIDATION
// create a random change code in coprocessor
challenge = createChallenge(cAN, cAuthDataPage)

// ask the user iButton to respond to the challenge
uResp=answerChallenge(uAN,uAuthDataPage,challenge)
uData=uResp[0:31]
uSignDataPageWCC=uResp[32:35]
uMAC=uResp[36:55]

// recreate user device’s authentication secret in coprocessor
// in an unused secret number (wkSecretNum)
s=bindSecretToiButton(cAN,cAuthDataPage, wkSecretNum, bindData, uAuthDataPage, uAN)

// verify the user device’s response MAC in coprocessor
status=verifyAuthResponse(cAN,wkDataPage,uData,uAN,uAuthDataPage,

uAuthDataPageWCC,challenge,uMAC)
…

STATIC DATA SERVICES WITH DATA VALIDATION
// create a random change code in coprocessor
challenge = createChallenge(cAN, cAuthDataPage)

// ask the user iButton to respond to the challenge
uResp=answerChallenge(uAN,uAuthDataPage,challenge)
uData=uResp[0:31]
using=uData[4:23]
uSignDataPageWCC=uResp[32:35]
uMAC=uResp[36:55]

AN157

27 of 38

// recreate user device’s unique authentication secret in coprocessor
// in an unused secret number (wkSecretNum)
s=bindSecretToiButton(cAN,cAuthDataPage, wkSecretNum, bindData, uAuthDataPage, uAN)

// verify the user device’s response MAC in coprocessor
status=verifyAuthResponse(cAN,wkDataPage,uData,uAN,uAuthDataPage,
uAuthDataPageWCC,challenge,uMAC)

// recreate the data signature in coprocessor
// initialize uData with signInitial
uData_ini=…
cSign=createDataSignature(cAN,cSignPage, cSignSecretNum, uData_ini, signCode,
uSignDataPage, uAN, uSignDataPageWCC-1)

// compare the uSign and cSign
….

DYNAMIC DATA SERVICES
// create a random change code in coprocessor
challenge = createChallenge(cAN, cAuthDataPage)

// ask the user iButton to respond to the challenge
uResp=answerChallenge(uAN,uAuthDataPage,challenge)
uData=uResp[0:31]
uSignDataPageWCC=uResp[32:35]
uMAC=uResp[36:55]

// recreate user device’s unique authentication secret in coprocessor
// in an unused secret number (wkSecretNum)
s=bindSecretToiButton(cAN,cAuthDataPage, wkSecretNum, bindData, uAuthDataPage, uAN)

// verify the user device’s response MAC in coprocessor
s=verifyAuthResponse(cAN,wkDataPage,uData,uAN,uAuthDataPage,

uAuthDataPageWCC,challenge,uMAC)

// recreate the data signature in coprocessor
cSign=createDataSignature(cAN,cSignPage, cSignSecretNum, uData_ini, signCode,

uSignDataPage, uAN, uSignDataPageWCC-1)

// compare the uSign and cSign
…

// update the service data and recompute signature
sign=createDataSignature(cAN, cSignPage,cSignSecretNum, uData_Update,

signCode,uSignDataPage, uAN, uSignDataPageWCC)

// write the new service data and signature (upData) to the user iButton
s=writeDataPage(uAN,uAuthDataPage,upData)

AN157

28 of 38

// authenticate the user iButton and verify service data again
challenge = createChallenge(cAN, cAuthDataPage)

// ask the user iButton to respond to the challenge
uResp=answerChallenge(uAN,uAuthDataPage,challenge)
uData=uResp[0:31]
uSignDataPageWCC=uResp[32:35]
uMAC=uResp[36:55]

// make sure the user iButton received the updated data, compare uData and upData
…

// verify the user device’s response MAC in coprocessor
status=verifyAuthResponse(cAN,wkDataPage,uData,uAN,uAuthDataPage,
uAuthDataPageWCC,challenge,uMAC)

APPENDIX A: IMPLEMENTING THE APIS
The implementation details of various APIs are discussed in this section. A developer should be able to
adopt them to the computer language of his choice. Please note that these listings are not actual or
functional computer codes. They are only intended to demonstrate the basic command and data flow
sequences. For brevity the listing ignores error checking and retry loops. In the actual implementation
error checking and retries are always needed.

BASIC 1-WIRE DEVICE I/O OPERATIONS
The necessary 1-wire device access functions are assumed to be provided by a driver for the
appropriate platform. The actual names of functions may differ from those listed below, however the
functionalities should be the same. We assume that the following helper functions have been provided.

BASIC 1-WIRE I/O OPERATIONS Table 4
S=select(devAN) Selects the device whose address number (devAN) is

given in the argument. The call returns 0 if device is
selected successfully.

S=select() Selects the device whose devAN is the same as the last
one accessed. The call returns 0 if device is selected
successfully.

S=resume() Resumes communication with the last communicated
device on the network. The call returns 0 if device is
selected successfully.

S=reset() Resets the 1-wire net, call returns 0 if operation is
successful.

Data=readBytes(len) Reads len bytes from the selected device
S=writeBytes(block,from,len) Writes len bytes (starting at offset from of the data array

block) to the selected device. The call returns 0 if
operation is successful.

TA1=lowAddress(page) Returns the low address byte of a data page number
TA2=highAddress(page) Returns the high address byte of a data page number

AN157

29 of 38

TA1S=lowSecretAddress(secretNum) Returns the low address byte of a secret number
TA2S=highSecretAddress(secretNum) Returns the high address byte of a secret number
C=CRC16(block,from,len,seed) Computes the CRC-16 of the given len data elements

(starting at offset from of array block), with the given
seed value seed.

C=invCRC16(block,from,len,seed) Computes the inverted CRC-16 of the given len data
elements (starting at offset from of array block) with the
given seed value seed

WRITE TO A DATA PAGE (WRITEDATAPAGE)
This API writes a 32-byte data block to a data page.

int status = writeDataPage(byte[] devAN, byte pageNum, byte[] data)

variable type Description
devAN byte[8] target iButton address number
pageNum byte target page number
data byte[32] the data block to be written
status int 0 = no error

status<>0 means error occurred. Depending on the actual
implementation, the values of status may represent various sources of
errors.

TA1=lowAddress(pageNum)
TA2=highAddress(pageNum)

Command Data stream Notes
select(…) devAN selects the target iButton for communication
Erase Scratchpad [W]: {C3h, TA1, TA2} this clears the HIDE flag for subsequent I/O
readBytes(len) read enough (for example len=5) status bytes to check if

operation has completed. A value of AAh indicates
completion.

reset() resets the above operation
resume() resumes communication with the target device
Write Scratchpad [W] {0F, TA1, TA2, data} writes the data block to scratchpad
readBytes(2) reads the inverted CRC-16 of the above data stream. TCU

should compute its version of the CRC-16 for the same data
stream and compare with the value read from the target device.
A mismatch indicates errors in the I/O.

reset()
resume()
Read Scratchpad [W] AAh

[R] {TA1, TA2, ES}
reads address and ES registers.
TCU should check if these readings are correct.

reset()
resume()
Copy Scratchpad [W] {55h, TA1, TA2, ES} copies scratchpad data to target page.
readBytes(len) check for operation status. A value of AAh byte in the returned

block indicates the completion of the copy operation.
reset() resets the network and call returns

A simplistic way of trapping errors and iterating a preset number of loops would be to put the above
steps in a loop and let the code flow jump to the beginning of the loop each time an error occurs. This

AN157

30 of 38

approach is easy to implement but sacrifices on execution speed. A more tighter error trapping would
be to check each command call for error and only iterate on the offending call when an error occurs.
The table below illustrates a simplistic approach.

Command Data stream Notes
loop=0
start:
loop=loop+1
do while loop<=loopLimit
k=select(…) devAN selects the target iButton for communication
if(k<>0) goto start
Erase Scratchpad [W]: {C3h, TA1, TA2} this clears the HIDE flag for subsequent I/O
readBytes(len) {status bytes} read enough (for example len=5) status bytes to check

if operation has completed. A value of AAh indicates
a success.

if (the last status byte is not AAh) goto start
s1=reset() resets the above operation
s2=resume() resumes communication with the target device
if(s1<>0 or s2<>0) goto start
Write Scratchpad [W] {0F, TA1, TA2, data} writes the data block to scratchpad
readBytes(2) {inv CRC-16 bytes} reads the inverted CRC-16 of the above data stream.

TCU should compute its version of the CRC-16 for
the same data stream and compare with the value read
from the target device. A mismatch indicates errors in
the I/O.

if (CRC bytes do not match) goto start
s1=reset()
s2=resume()
if(s1<>0 or s2<>0) goto start
Read Scratchpad [W] AAh

[R] {TA1, TA2, ES}
reads address and ES registers.
TCU should check if these readings are correct.

if (TA1, TA2, and ES do not match) goto start
reset()
resume()
Copy Scratchpad [W] {55h, TA1, TA2, ES} copies scratchpad data to target page.
readBytes(len) {status bytes} check for operation status. At value of AAh byte in

the returned block indicates the completion of the
copy operation.

if (the last status byte <>AAh) goto start
s1=reset() resets the network
end loop:
if(loop>loopLimit)

status=1
else

status=0

AN157

31 of 38

ERASING A DATA PAGE (ERASEDATAPAGE)
This API erases the contents of a data page by filling it with 32 FFh bytes.

int status = eraseDataPage(byte[] devAN, byte pageNum)

variable type description
devAN byte[8] target iButton address number
pageNum byte target page number
status int see above description for the return status variable

set data[32]={32 FFh bytes}
status=writeDataPage(devAN, pageNum, data)

COPY MAC TO A SECRET PAGE (COPYMACTOSECRET)
This API copies 8 bytes of a result MAC in the scratchpad to a secret address memory. This function is
often used after the Compute First Secret and Compute Next Secret commands to copy the partial
MAC placed in the scratchpad to a secret memory.

int status = copyMACtoSecret(byte[] devAN, byte secretNum)

variable type description
devAN byte[8] target iButton address number
secretNum byte the target secret number

TA1S=lowSecretAddress(secretNum)
TA2S=highSecretAddress(secretNum)
set tmp_data[32]={32 00h bytes}

Command Data stream Notes
select(devAN) selects the target iButton for communication
Write Scratchpad [W] {0Fh, TA1S, TA2S, tmp_data}

[R] {inverted CRC-16 bytes}
sets up the address flags for next copying
operation. The returned CRC bytes are used for
error detection

reset()
resume()
Read Scratchpad [W] AAh

[R] {TA1S,TA2S,ES}
reads back the address and E/S registers. TCU
checks if these registers are correct

reset()
resume()
Copy Scratchpad [W] {55h, TA1S, TA2S, ES} copies secret from scratchpad to secret number

secretNum
Note that only 8 bytes from scratchpad are copied
into the secret memory.

readBytes(len) read enough status bytes to check if the copying
operation has completed

reset()

AN157

32 of 38

INSTALLING A SYSTEM SECRET (INSTALLSYSTEMSECRET)
Installing system secret in a SHA iButton is performed with both the coprocessor and user iButtons,
during service installation and conducting transactions. The process for installing system
authentication secret and installing system signing secret are identical except that the partial phrases
are usually different and that the system signing secret must be installed in secret number 0 of the
coprocessor. The API implemented for this general purpose is installSystemSecret.

int status= installSystemSecret(byte[] devAN, byte pageNum, byte secretNum,
 int numPartials, byte[] partial)

variable name type description
devAN byte[8] address number of the target iButton
pageNum byte target data page number of device to write partial phrases to
secretNum byte target secret number, for the intermediate and final secrets
numPartials int number of partial phrases
partial byte[size] partial phrase array. It is defined as a single dimension array.

size=47*numPartials

TA1=lowAddress(pageNum)
TA2=highAddress(pageNum)
TA1S=lowSecretAddress(secretNum)
TA2S=highSecretAddress(secretNum)

PADDING PARTIAL PHRASE (PAD_PARTIAL[J]) Table 5
8 padding bytes 15 bytes 9 padding bytes
8 00h bytes partial[j][32:46] 9 00h bytes

Command Data stream Notes
Loop j=0 to numPartials-1

write partial[j] to data page pageNum
writeDataPage(…) devAN, pageNum,

partial[j][0:31]
write the first 32 bytes of partial[j] to data page pageNum

write padded partial (pad_ partial) to scratchpad
resume()
Write Scratchpad [W] {0Fh, TA1, TA2,

pad_partial[j]}
[R] {inverted CRC-16
bytes}

writes the padded binding data code to scratchpad. The
returned inverted CRC bytes are used for error detection

reset()
resume()
If (j=0)
ComputeFirstSecret
else
ComputeNextSecret

If (j=0)
[W]{33h,TA1,TA2,0F}
else
[W]{33h,TA1,TA2,F0}

[R] {inverted CRC-16
bytes}

compute MAC (secret)
launches the Compute First Secret or Compute Next Secret
function depending on the value of j. Partial result of MAC is
placed in scratchpad.

readBytes(len) read enough (for example len=5) status bytes to check if
operation has completed. A value of AAh indicates success.

reset()
copyMACtoSecret(…) devAN, secretNum copy 8 bytes of the MAC to target secret
reset()
End of Loop

AN157

33 of 38

BINDING A SECRET TO THE USER iBUTTON (BINDSECRETTOIBUTTON)
An unique device authentication secret is created by binding the system authentication secret with the
service data page number and the device address number.

int status = bindSecretToiButton(byte[] devAN,byte pageNum,byte secretNum,
byte[] bindData, byte uAuthDataPage, byte[] uAN)

variable type description
devAN byte[8] target device address number
pageNum byte target data page number
secreNum byte authentication secret number
bindData byte[39] a 39-byte block system wide binding data
uAuthDataPage byte data page number for the binding data
uAN byte[8] address number of the user device

TA1=lowAddress(pageNum)
TA2=highAddress(pageNum)
TA1S=lowSecretAddress(secretNum)
TA2S=highSecretAddress(secretNum)

PADDING BINDING DATA (PAD_BIND) Table 6
8 padding bytes 4 bytes 1 byte 7 bytes 3 bytes 9 padding bytes
8 00h bytes bindData[32:35] uAuthDataPage uAN[0:6] bindData[36:38] 9 00h bytes

Command Data stream Notes
writeDataPage(…) devAN, pageNum,

bindData[0:31]
writes binding data bindData[0:31] to page pageNum

write padded binding data (pad_bind) to scratchpad
resume()
Write Scratchpad [W] {0Fh, TA1, TA2,

pad_bind}
[R] {CRC-16 bytes}

writes the padded binding data to scratchpad
TCU checks the returned operation status bytes CRC-16 to
detect any errors.

reset()
compute the MAC (device secret)

resume()
Compute Next Secret [W]{33h,TA1,TA2,F0}

[R] {bytes of inverted
CRC-16}

launches the Compute Next Secret function. Partial result of
MAC is stored in scratchpad for next copying operation

readBytes(len) read enough status bytes to check if operation has
completed.

reset()
copyMACtoSecret(…) devAN, secretNum copy the device secret from scratchpad to target secret

AN157

34 of 38

CREATING THE SERVICE DATA SIGNATURE (CREATEDATASIGNATURE)
This API computes a signature for the service data using the service data, the system signing secret, the
service data page number and its write cycle counter, and the address number of user iButton.

byte sig[]=createDataSignature(byte[] devAN, byte pageNum, byte secretNum, byte[] uData,
byte[] signCode, byte uSignDataPage, byte[] uAN, byte[] uSignDataPageWCC)

The call returns a 20 byte MAC if successful.
Parameters and data used for creating a service data signature are listed below:

variable type description
devAN byte[8] target iButton address number (coprocessor)
pageNum byte the data page number to which the service data is written for

computing the signature
secretNum byte the secret number where the system signing secret is stored

(must be 0)
uData byte[32] the user data block to be signed
signCode byte[3] a system wide code used for computing the signature
uSignDataPage byte the service data page number of user iButton, used in

computing the signature
uAN byte[8] the user device address number used for computing the

signature
uSignDataPageWCC byte[4] write cycle counter of service data page (uSignDataPage) in

user iButton
TA1 = lowAddress(pageNum)
TA2=highAddress(pageNum)

For I/O efficiency the signCode and other service parameters are padded into a 32-byte block and
written to the scratchpad at once.

PADDING SIGNING DATA (PAD_SIGNCODE) Table 7
8 padding bytes 4 bytes 7 bytes 1 byte 3 bytes 9 padding bytes
8 00h bytes uSignDataPageWCC+17 uAN[0:7] uSignDataPage signCode 9 00h bytes

Command Data stream Notes
writeDataPage(…) devAN, pageNum, uData write uData to page pageNum

write padded sign data (pad_signCode) to scratchpad
resume()
Write Scratchpad [W] {0Fh, TA1, TA2,

pad_signCode}
[R] {inv. CRC bytes}

writes the padded signing data (pad_signCode) to scratchpad

reset()
compute the signature

resume()
Sign Data Page [W]{33h,TA1,TA2, C3}

[R]{inv CRC-16 bytes}
launches the Sign Data Page command. The result MAC is
stored in scratchpad

readBytes(len) read enough status bytes to check if operation has completed.
reset()

7 WCC+1 becomes the new write cycle counter of service data page after the signed service data is written to it because
each writing to the page increments the cycle counter by 1 (on pages 8 to 15).

AN157

35 of 38

resume()
Read Scratchpad [W] AAh

[R]{TA1S, TA2S, ES,
scratchpad data, and CRC
bytes}

reads the address, ES registers and scratchpad data. The 20-
byte signature block is stored starting at offset 8 of the
scratchpad.

reset() resets 1-wire network and returns

CREATING THE CHALLENGE BYTES (CREATECHALLENGE)
This API returns a 3-byte challenge, often generated in the coprocessor. The challenge has a random
nature in the sense that the SHA computation uses the SHA engine counter as one input parameter (the
counter increments each time when a SHA computation is carried out in the device and the user would
not get the same challenge bytes twice. Since this SHA computation does take input data from a data
page and the scratchpad, one could make the challenge truly random by using environmental
conditions (such as temperature, humidity, noise level, and the reader probe force etc.) as input to the
computation. This API implementation simply replies on the SHA engine counter value and whatever
contents in the memory page and scratchpad to provide an ever changing MAC.

byte[] challenge=createChallenge(byte[] devAN, byte pageNum)

variable type description
devAN byte[8] target iButton address number
pageNum byte target data page number. Only the secret associated with this page is

used in this simple implementation.

TA1 = lowAddress(pageNum)
TA2 = highAddress(pageNum)

Command Data stream Notes
select(…) devAN selects the device for communication
Erase Scratchpad [W] {C3h, TA1, TA2} clears the HIDE flag so that scratchpad data could be read
reset()
resume()
Compute Challenge [W]{33h,TA1,TA2,CCh} launches the Compute Challenge command
readBytes(2) [R] {inverted CRC-16 bytes} reads two bytes of the inverted CRC-16 of command, TA1,

TA2 and control byte.
readBytes(len) check to see if SHA computation has completed. A valle of

AAh indicates success.
reset()
resume()
Read Scratchpad [R] {b0,b1,…b31} reads 32 bytes from the scratchpad. The SHA computation

result is stored between offsets 8 and 27. Pick any three
bytes as the desired challenge (=challenge)

reset() resets the 1-wire network and returns

AN157

36 of 38

ANSWERING THE AUTHENTICATION CHALLENGE (ANSWERCHALLENGE)
When a user iButton is presented with a challenge from the local host, it responds with a MAC it
computes form the selected data page and its device authentication secret.

byte[] resp=answerChallenge(byte[] devAN, byte pageNum, byte[] challenge)

The call returns the following data items packed in a single dimension byte array if successful, null if
error occurred.

uData[32] = resp[0:31] data from page pageNum
pageWCC [4] = resp[32:35] write cycle counter of page pageNum
uMAC[20] = resp[36:55] the authentication response MAC

TA1=lowAddress(pageNum)
TA2=highAddress(pageNum)

variable name type description
devAN byte[8] target device address number
pageNum byte target data page number. Note that this page number must pair with

the device authentication secret number.
challenge byte[3] challenge bytes
resp byte[56] a one-dimensional data array packed per the table above.

For I/O efficiency the challenge bytes are often padded to a full 32-byte block for writing to scratchpad
(pad_challenge):

PADDING CHALLENGE BYTES (PAD_CHALLENGE)
20 bytes padding 3 bytes 9 bytes padding
20 00h bytes challenge 9 00h bytes

Command Data stream Notes
write padded challenge bytes (pad_challenge) to scratchpad

select(…) devAN selects the user button for communication
Erase Scratchpad [W]{C3h,TA1,TA2} Erases the scratchpad, sets the device ready for receiving

data
reset()
resume()
Write Scratchpad [W] {0Fh, TA1, TA2,

pad_challenge}
writes the padded challenge data to scratchpad.

reset()
compute the response MAC

resume()
Read Auth. Page [W] {A5h, TA1, TA2}

[R] {32 bytes data from data
page (uData), counter of data
page (pageWCC), counter of
secret page, inverted CRC-16
of command, address, data, and
counter bytes}

(1) this command causes the user button to compute a MAC
based on its authentication secret, data of selected page, and
the challenge from scratchpad.
(2) TCU would read contents of data page, counter of data
page, counter of secret page, and inverted CRC-16 of
command, address, data and counter bytes.

readBytes(len) read status bytes to see if SHA computation has completed
reset()

read response MAC (uMAC)

AN157

37 of 38

resume()
Read Scratchpad R: {TA1, TA2, ES, 32 bytes

scratchpad data}
uMAC starts at offset 8 and
ends at 27

reads the computation result from the scratchpad. Note that
the desired MAC (20 bytes) is stored starting at offset 8.

reset() resets the 1-wire network and return

VERIFYING THE AUTHENTICATION RESPONSE (VERIFYAUTHRESPONSE)
This API is called to verify if the user iButton’s authentication response is correct. The function must
be called after the user iButton’s device authentication secret has been recreated in a workspace secret
in the coprocessor.

int status = verifyAuthResponse(byte[] devAN, byte wkDataPage, byte[] uData, byte[] uAN, byte
uPageNum, byte[] uPageWCC, byte[] challenge, byte[] uMAC)

status = 0 user response MAC (uMAC) is valid
1 user response is invalid
-1 error occurred

variable name type description
devAN byte[8] target device address number
wkDataPage byte workspace data page number
uData byte[32] user device data page (of page uPageNum) contents, obtained

when challenging user device for the authentication response.
uAN byte[8] user device address number
uPageNum byte user device authentication data page number
uPageWCC byte[4] user device authentication data page write cycle counter
challenge byte[3] the challenge bytes, used to challenge user iButton for

authentication MAC
uMAC byte[20] the user iButton’s authentication MAC

TA1W=lowAddress(wkDataPage)
TA2W=highAddress(wkDataPage)

For I/O efficiency, the challenge and other service and device parameters are padded to a full 32 byte
page for writing to scratchpad.

AN157

38 of 38

PADDING CHALLENGE AND SERVICE PARAMETERS (PAD_AUTH)
8 padding bytes 4 bytes 1 byte 7 bytes 3 bytes 9 padding bytes
8 00h bytes uPageWCC uPageNum uAN[0:6] challenge 9 00h bytes

Command Data stream Notes
writeToDataPage(...) devAN,wkDataPage,uData write uData to workspace data page

write service parameters and challenge bytes to scratchpad
resume()
Write Scratchpad [W] {0FH, TA1W, TA2W,

pad_auth}
[R] {inverted CRC-16
bytes}

writes the padded challenge bytes and service parameters
to scratchpad

reset()
compute the response MAC

resume()
Validate Data Page [W] {33h,TA1W,

TA2W,3Ch}
[R] {inverted CRC-16}

The computation results are placed in the scratchpad
between offsets 8 and 27.

readBytes(len) read enough (for example len=5) status bytes to see if
operation has completed

reset()
check the user iButton response MAC

resume()
Match Scratchpad [W] {3Ch, uMAC}

[R] {inverted CRC-16 bytes,
status bytes}

Check the last status byte:
AAh = data matches
FFh = data does not match

reset() resets the network and returns

